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a b s t r a c t

Bimodal packing arrangements can be used to overcome the balling phenomena in selective laser sinter-
ing (SLS). However, little attention has been paid to the effects of bimodal packing structures on radiative
transfer in the SLS powder beds. In this study, a sequential addition packing algorithm is firstly employed
to generate 3-D random packing of opaque, diffusively or specularly reflecting spherical particles with the
same or different sizes. Then, a Monte Carlo based ray tracing algorithm is formulated, for the first time,
to simulate the radiative transfer in the bimodal random packing structures composed of particles with
different sizes and emissivities. The credibility of the computer code is verified with published experi-
mental data. A comparison is also made between the calculating results and those obtained by two-flux
model. By using the present algorithm, the radiative heat fluxes at both levels of particle and entire bed as
well as the transmitted laser energy are statistically evaluated. The influences of bimodal size distribution
and particle surface emissivity on the radiative transfer process are examined. Such information is
expected to be helpful for optimizing the SLS process.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction needs to be performed such that laser parameters, such as laser
Selective laser sintering (SLS) is an emerging technology that
can fabricate structurally sound parts from powdered materials
using a directed laser beam [1]. It is an efficient and rapid tech-
nique for manufacturing complex parts that are often unobtainable
by conventional manufacturing processes [2,3]. One obstacle of the
SLS process is the balling phenomenon, in which melted powder
grains stick to each other due to the surface tension force, thereby
forming a series of spheres with diameters approximately equal to
the laser beam diameter [2,4]. One way to overcome the balling
phenomenon is to use two different types of metal powders, one
with a significantly higher melting point than the other [5]. During
the SLS process, only the powders with the lower melting point are
molten and those with the higher melting point remain in solid.
Another new idea recently proposed is to use bimodal powders
having the same composition but distinctive sizes [6]. In such a
packing process, those smaller particles will be heated up faster
than the larger particles because the former have lower thermal
inertia. This could lead to melting of the smaller particles in the
mixture while the large particles are still in the solid phase.

In SLS processes, the three-dimensional functional parts are cre-
ated using the layered manufacturing technique by fusing powered
materials with a moving laser beam. Melting and resolidification
are the mechanisms that bond metal powder particles to form a
layer and also bond different layers together to form a functional
part. For reaching a desired sintering depth, heat transfer analysis
ll rights reserved.
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intensity, laser beam radius, laser beam scanning velocity, etc.,
can be correctly chosen prior to the real SLS procedure. However,
modeling the thermal process in SLS is very difficult due to the
many different physical processes involved. The liquid flow driven
by surface tension and buoyancy forces, the shrinkage phenomena
induced by the overall density change, the powder particle motion
due to shrinkage effect have been proved to play important roles in
the temperature transients and thus the sintering rate and depth.
To predict these complex physical processes, one must know the
laser energy deposition distribution in the power bed. The thermal
behavior and fluid dynamics in such a multiphase system strongly
depend on laser energy deposition in the packing bed. Since 3-D
random packing structures are an open pore system, laser radia-
tion can penetrate into deep part of the powder beds through mul-
tiple reflections from particle surfaces. Understanding and
accurately modeling radiative transfer in such packing structures
is critical for the subsequent radiation–conduction–convection
coupled heat transfer analysis. To date, most of the radiative heat
transfer models for packing structures have been developed for
powders having the same composition and size (e.g., [7–11]). Little
has been done on laser light transport in a packing bed containing
powders of different compositions or sizes. Therefore, there is a
need for establishing a theoretical model that can predict the radi-
ative transfer in randomly packed beds that contain powder parti-
cles having different radiative properties and/or sizes.

The existing theoretical models for simulation of the radiative
transfer in packing structures can be classified into two main cat-
egories [12]: (1) continuous or pseudo-continuous models and (2)
discontinuous or discrete models. For the former, the theories are
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Nomenclature

a, b effective absorption coefficient and back-scattering
coefficient, m�1

i+, i� forward and backward radiant intensities in two-flux
model, W/m2

i, j, k unit vectors in the x, y, z directions
i0; j0; k0 unit vectors in the x0; y0; z0 directions
i0x; i0y; i0z scalar components of the unit vector i0 in the x, y, z

directions
j0x; j0y; j0z scalar components of the unit vector j0 in the x, y, z

directions
k0x; k0y; k0z scalar components of the unit vector k0 in the x, y, z

directions
n1, n2 numbers of larger and smaller spheres, respectively, m
nx, ny, nz direction cosines of outward normal of the sphere sur-

face
Nr total simulation number of rays in Monte Carlo simula-

tion
Nt total simulation number of spheres in packing algo-

rithm
P laser incident power, W
rl radius of laser spot, m
R radius of spherical particle, m
R1, R2 radii of larger and smaller spheres, respectively, m
Ri radius of the ith sphere, m
s traveling length of radiation ray, m
Si total weight of the rays absorbed by the ith sphere
Sl total weight of the rays deposited on an surface element

of particle

W ray weight
Wr weight of the reflected ray
Wi weight of the incident ray
x, y, z global reference frame, m
x0; y0; z0 local reference frame for ray reflection on particles, m
x00; y00; z00 local reference frame for ray absorption on particles, m
xc, yc, zc coordinates of particle center, m
xi, yi, zi coordinates of interacting point, m
x0, y0, z0 current position of the ray, m
xmax, ymax, zmax dimensions of the packing container, m

Greek symbols
e emissivity
/1 angle of incident ray on specularly scattering spheres,

rad
/0, h0 zenith angle and azimuth angle in the local reference

frame (x0; y0; z0), rad
/00, h00 zenith angle and azimuth angle in the local reference

frame (x00; y00; z00), rad
lx1, ly1, lz1 direction cosines of incident ray
lx2, ly2, lz2 direction cosines of reflected ray
lx, ly, lz direction cosines in global reference frame (x, y, z)
l0x; l0y; l0z direction cosines in local reference frame (x0; y0; z0)
q surface reflectivity of particle
s transmittance
ni random numbers between 0 and 1 (i = 1, 2, 3, 4)
D/00, Dh00 angles used to describe the surface element, rad
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developed based on dependent and independent scattering and
their applicability limits are demarcated (e.g., [13,14]). For the lat-
ter, Monte Carlo and/or ray tracing methods are often used for
effectively taking into account the dependent scattering since they
are a particle-level simulation technique that can model multiple
reflections among particles [15–20]. The authors of Ref. [19] sug-
gested that the Monte Carlo approach is valid if the radius of par-
ticle is greater than bk/(2p), where k is wavelength and b is a
constant equal to 115. They further suggested the radius are parti-
cles should be greater than 75 lm for thermal (infrared) radiation,
which corresponds to k = 4 lm. For SLS of metal particles, Nd:YAG
laser (k = 1.06 lm) is generally used for better coupling between
laser and metal. In this case, the minimum radius that Monte Carlo
approach can be used is 19.4 lm. The radius of particles that is
commonly used in SLS is generally greater than this limit, which
makes Monte Carlo approach an ideal tool to simulate laser inter-
action with powder particles for most SLS applications.

In this study, a sequential addition packing algorithm is
employed to generate 3-D randomly packed structures that are
composed of spherical particles with the same or different sizes.
A Monte Carlo based ray tracing scheme is then established to sim-
ulate the radiative transfer in the bimodal random packing struc-
tures. The computer code is validated by comparison with
existing experimental data. The results are also compared to those
obtained by two-flux model. Using the present algorithm, impor-
tant radiative information, such as radiation heat flux on each par-
ticle surface, laser light penetration in the powder bed, transmitted
laser energy, etc., are evaluated and discussed.

2. Theoretical consideration

The radiant intensity through a slab of packed powders is atten-
uated by particle absorption and scattering, and is augmented by
particle emission. Two-flux model [21] is a simple but efficient
approximation to describe the radiant energy distribution in a 1-D
medium where isotropic scattering is predominant. Two-flux
approximation involves the assumption that the intensity at any
point can be divided into a forward i+ and a backward i� component.
Assuming no emission, the equation of radiative transfer can be inte-
grated over the forward and the backward directions to give:

diþ

dl
¼ �ðaþ bÞiþ þ bi� ð1Þ

� di�

dl
¼ �ðaþ bÞi� þ biþ ð2Þ

where l is the coordinate in the direction of radiative heat transfer
and perpendicular to the boundary plane of the packed beds, i+

and i� are the radiant intensities in the positive and negative l direc-
tion, and a and b are the effective absorption coefficient and back-
scattering coefficient.

As shown by Kubelka [22], the transmittance s of a slab of
packed particles having a finite thickness L can be found by solving
the two-flux equations with boundary conditions:

iþ ¼ i0 l ¼ 0 ð3Þ
i� ¼ 0 l ¼ L ð4Þ

The transmittance is:

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðaþ 2bÞ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðaþ 2bÞ

p
coshðL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðaþ 2bÞ

p
Þ þ ðaþ bÞ sinhðL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðaþ 2bÞ

p
Þ
ð5Þ
3. Numerical model description

The Monte Carlo based ray tracing method is a particle-level
simulation technique, requiring the detailed powder packing struc-
ture by particle locations and sizes, population ratio, coordination
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Fig. 1. Schematic of the configuration of a powder bed.
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number, etc. In this study, the sequential addition algorithm [23–
25] is employed to simulate the 3-D random packing process of dif-
ferent-size spherical particles. Although the packed beds, obtained
using the random packing algorithm described in Section 2.1,
should be irregular, a regular packing structure of dimensions
xmax � ymax � zmax is sketched in Fig. 1 for ease of explanation.

3.1. 3-D random packing algorithm

The sequential addition packing simulation starts with drop-
ping a randomly chosen spherical particle, according to a pre-gen-
erated particle size distribution, into a xmax � ymax � zmax

rectangular container. The final positions of the incoming spheres
are decided by the dropping and rolling rules that are devised from
the physical process of spheres dropping in the gravitational field
by minimizing its gravity potential. Initially, spheres at coordinates
(x, y, z) are allocated (Fig. 1), where (x, y) are chosen randomly and
z is well above the top of the defined container. Each sphere moves
down along a vertical path (i.e., constant x and y with varying z)
until its surface contacts with a deposited sphere or hits the floor
of the container. If it hits the floor, its final position is determined.
Otherwise, the following rolling rule is applied: the sphere rolls
down in a vertical plane along its contacting sphere surface until
it contacts with another sphere.

When a falling sphere is in contact with two deposited spheres,
it is at an unstable state and its gravity potential has to be reduced
further. Thus, the sphere will keep on rolling downwards with the
double contacts until it hits a third particle or the floor. Whether it
becomes stable or not is determined by a stabilization judgment
based on the criterion of minimum gravitational potential. If stable,
the current location is the final position of the sphere. Then, the
model will turn to generate another new sphere. Otherwise, it con-
tinues to roll down. The periodic boundary condition is applied to
eliminate the wall effects. Any sphere that leaves the container
through a vertical wall or a corner will immediately reenter the
opposite wall or corner. The details of the algorithm of particle roll-
ing down, the stabilization judgment, and the computer program
flow chart are described in the authors’ previous work [25].

3.2. Monte Carlo ray tracing procedure

Instead of performing the simulation for a representative unit
cell, a full Monte Carlo ray tracing approach is employed to evalu-
ate the radiative transfer throughout the entire medium in this
study. Consider a packing structure of dimensions xmax � ymax

� zmax (Fig. 1). A flat-top, continuous-wave laser beam with a ra-
dius of rl and a total power of P is impinging onto the packed
bed. Assume that the center of the laser spot coincides with the
center of the upper surface of the packed bed. The global rectangu-
lar reference frame Oxyz that is fixed to the 3-D packed bed is used
to trace the radiation ray movement. Another local reference frame
will be introduced to quantify the reflection behavior when a ray
hits a particle.

A radiation ray is characterized by its starting point (at the plane
z = zmax), direction and energy (represented by a weight value, ini-
tially set to be 1 and decreasing as the ray energy is absorbed by
power particles). An interaction is said to occur when a radiation
ray hits a particle, and the hitted point is referred to as the interacting
point. When a ray first enters the packed bed, a part of its energy is
absorbed by the interacted particle and the rest is reflected. The re-
flected ray may escape from the packed bed, or hit another particle
and then repeats the absorption and reflection process. Due to the
long pore paths in the packed bed, the reflected ray may undergo
multiple interactions. Each ray is traced until all the rays escape from
or pass through the packed bed or until the ray’s weight is below a
prescribed value (e.g., 0.0001).

The starting position of an incident ray can be described by:

x ¼ xmax=2þ rl

ffiffiffiffiffi
n1

p
cosð2pn2Þ ð6Þ

y ¼ ymax=2þ rl

ffiffiffiffiffi
n1

p
sinð2pn2Þ ð7Þ

z ¼ zmax ð8Þ

where n1 and n2 are random numbers between 0 and 1. Since the la-
ser incident radiation direction is collimated and perpendicular to
the x–y plane, the direction cosines of the incident ray are
(0, 0, �1). Let the current position of the ray be (x0, y0, z0), the
new position (x, y, z) after traveling a length s becomes:

x ¼ x0 þ lxs ð9Þ
y ¼ y0 þ lys ð10Þ
z ¼ z0 þ lzs ð11Þ

where lx, ly and lz are the direction cosines of the reflected ray,
determined by the previous interaction condition.

The next interacting point can be obtained by substituting Eqs.
(9)–(11) into the equation of the powder sphere

ðx� xcÞ2 þ ðy� ycÞ
2 þ ðz� zcÞ2 ¼ R2 ð12Þ

To find the minimum distance s, Eq. (12) is solved for all the spheres
in the packed bed. The distance that the ray travels before it inter-
sects all the boundary surfaces is also determined. The minimum of
all the s solutions gives the new interacting point or the intersection
point with a bounding surface. In case a radiation ray passes
through the upper or the lower face, the energy associated with
the ray is registered as transmission or reflection.

Selective laser sintering can use a number of build materials
including: nylon, glass filled nylon, elastomers, waxes, polycarbon-
ates, ceramics, metals, etc. Therefore, the particle surface may be
diffusive or specular, depending on which material is employed
in the SLS process. For metal powder SLS process, the powders
are usually polished ones without surface impurities. The whole
SLS process is kept inside a heated chamber filled with an inert
gas such as nitrogen to reduce unwanted contamination with the
atmosphere. Therefore, it is more reasonable to treat the metal
powder surface as being optically specular.

In the following, the direction cosines of the reflected ray on
both specularly and diffusively scattering spheres will be derived.

For a specularly scattering sphere, the direction of the reflected
ray is found using the laws of reflection, i.e.: (1) the incident ray,
the reflected ray and the normal of the surface all lie in the same
plane; (2) the angle of incidence is equal to the angle of reflection.

The angle of incidence /1, the angle between the incidence
direction and the outward normal, is calculated by:

/1 ¼ arccos½�ðlx1nx þ ly1ny þ lz1nzÞ� ð13Þ

where lx1, ly1, lz1 and nx, ny, nz are the direction cosines of incident
ray and outward normal of the sphere surface.
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The direction cosines of the reflected ray is computed based on
the laws of reflection:

lx2¼lx1þ2nx cos/1; ly2¼ly1þ2ny cos/1;ly2¼ly1þ2ny cos/1

ð14Þ

The direction cosines of the reflected ray on diffusively scatter-
ing spheres are derived as follows. Let (x0, y0, z0) be a local reference
frame with its origin coinciding with the center of the interacting
sphere and the z0-axis pointing to the interacting point. Let i0, j0

and k0 be the unit vectors along the x0, y0 and z0 axes, respectively,
and i, j and k the unit vectors along the x, y and z axes, respectively.
The unit vector i0 is the cross product of k0 and k, and consequently,
j0 is the cross product of k0 and i0. Mathematically, the unit vectors
i0, j0 and k0 are defined as:

k0 ¼ ðxi � xcÞiþ ðyi � ycÞjþ ðzi � zcÞkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xcÞ2 þ ðyi � ycÞ

2 þ ðzi � zcÞ2
q ; i0 ¼ k0 � k;

j0 ¼ k0 � i0 ð15Þ

Since the powder is assumed to be diffusively scattering, a radi-
ation ray will be reflected in a random direction from the interact-
ing point toward to the hemisphere outside the spherical powder.
The Monte Carlo sampling technique is applied to generate the
random reflection direction [26,27]:

/0 ¼ sin�1ð
ffiffiffiffiffi
n3

p
Þ; h0 ¼ 2pn4 ð16Þ

In Eq. (16), n3 and n4 are random numbers between 0 and 1. The azi-
muth angle h0 and the zenith angle /0 are measured from the x0 and
z0 axis, respectively.

Once the directional angles h0 and /0 are determined, the reflec-
tion direction cosines l0x, l0y and l0z in the local reference frame are
obtained by:

l0x ¼ sin /0 cos h0; l0y ¼ sin /0 sin h0; l0z ¼ cos /0 ð17Þ

The reflection direction cosines of the reflected ray referred to the
global coordinate system can be computed by matrix
multiplication:

lx

ly

lz

8><
>:

9>=
>;
¼

i0x j0x k0x
i0y j0y k0y
i0z j0z k0z

2
64

3
75

l0x
l0y
l0z

8><
>:

9>=
>;

ð18Þ

where i0x, i0y, i0z are the scalar components of the unit vector i0; other
symbols in the matrix can be understood in the similar way.

The weight of the reflected ray is decremented to

Wr ¼ qWi ð19Þ

The remaining part, (1 � q)Wi, is absorbed by the interacting
sphere. For a gray surface, the reflectivity q can be directly com-
puted according to the emissivity, q = 1 � e.

In SLS applications, the incident radiation is from the top sur-
face of the packed bed and each particle is in contact with several
neighboring particles. Therefore, the heat flux over the interacted
particle surface is far from uniform. To determine the heat flux dis-
tribution, the surface of each spherical particle is discretized into
small elements. Fig. 2 shows the ray energy deposited onto an sur-
face element D/00 � Dh00 (shadowed area) at the azimuth angle h00

and zenith angle /00. The surface heat flux (ql) in this area is calcu-
lated as:

ql ¼
P � Sl

Nr � R2 � D/00 � sin D/00 � h00
ð20Þ

where P is the total incident power; Nr is the total number of the
radiation rays; R is the radius of the interacting sphere; Sl is the total
weight of the rays deposited on the element area.
To show the depth dependency of the absorbed radiative flux in
the packed bed, the averaged heat flux on each particle surface is
computed by

qi ¼
P � Si

Nr � 4pR2
i

ð21Þ

where the subscript i denotes the ith sphere; Si and Ri are the total
weight of the rays absorbed by and the radius of the sphere,
respectively.

4. Results and discussions

The parameters that control the quality of a packing structure
include packing density and coordination number. The packing
density is defined as the total volume of powder spheres divided
by the volume of the box containing those spheres. The coordina-
tion number is the number of the spheres in contact with a given
sphere. The average coordination number is defined as the sum
of the coordination numbers of all the spheres divided by the num-
ber of the total spheres (Nt). The results presented in this paper are
non-dimensional or normalized. As mentioned earlier, the Monte
Carlo approach is appropriate for Nd:YAG laser (k ¼ 1:06 lm)
interaction with particles whose radius is greater than 19.4 lm.
The radius of particles that is commonly used in SLS is generally
greater than this limit, which makes the results presented here va-
lid for most SLS applications. For SLS of particle with smaller size,
Maxwell’s equation must be solved to obtain the heat flux to the
particles.

Fig. 3 shows two typical 3-D random packing structures in a
rectangular container, obtained by the present packing algorithm.
Fig. 3(a) displays a packed bed that contains equal-size powder
spheres. The sphere radius is set as the unit of the dimension.
The resulting packing density is 0.57, and the average coordination
number is 5.92. Fig. 3(b) shows a different packed bed that is com-
posed of spheres of two different sizes. In this case the radius of the
smaller spheres is set as the unit of the dimension, the radius ratio
of the larger spheres to the smaller spheres is R1/R2 = 2:1, and the
population ratio is n1/n2 = 1:1. The resulting packing density and
average coordination number are 0.59 and 5.78, respectively. It is
worth noting that the packing density is increased whereas the
average coordination number is decreased in comparison with
the equal-sized sphere case. This is mainly attributed to the
decreasing of average coordination number on the smaller spheres,
as seen from the structural analysis in the authors’ previous work
[25]. The two packing structures shown in Fig. 3 exhibit a good ran-
domicity; no ordered domains are found throughout the packing
beds.



Fig. 3. 3-D random packing results: (a) equal-size spheres and (b) different-size spheres.
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Fig. 4 compares the transmittance from a packed bed of steel
spheres between the modeling results and the experimental mea-
surement. The emissivity of the particle surface taken here is 0.4, as
suggested by Chen and Churchill [28]. Since the experimental data
[28] is measured for a one-dimensional (1-D) packed bed, the pres-
ent Monte Carlo simulation is performed based on the 1-D assump-
tion, with which the entire top surface of the packed bed is heated
uniformly by a collimated incident flux and the lateral dimensions
(xmax and ymax) of the packed bed are much larger than the depth
(zmax). Thus, the starting positions of the incident rays given by
Eqs. (6)–(8) are simplified to

x ¼ xmaxn5; y ¼ ymaxn6; z ¼ zmax ð22Þ

Our calculation shows that when the lateral dimensions of a packed
bed are five times larger than the depth, the change of transmission
in lateral directions is negligible, which confirms the adequacy of
the 1-D assumption. For consistence with the packing algorithm,
the periodic boundary condition is employed in our Monte Carlo
simulation. Since the packing powder material is polished carbon
steel in the experiments [28], the spherical powder surface is con-
sidered to be specular. The normalized transmittance shown in
Fig. 4 is obtained by dividing the total weight of the transmitted
rays collected at the bottom surface of the packed bed by the total
incident ray weight. For comparison, the calculation by Singh and
Kaviany [18] and the calculating results obtained by two-flux model
are also shown in the figure. The effective absorption and backward
scattering coefficients, i.e., a and b, are 21.85 m�1 and 1213.91 m�1,
respectively, which are obtained at 1600 �F by Chen and Churchill
[28] via experimental data correlation based on the two-flux model.
As is seen from Fig. 4, there is a good agreement among the two-flux
model results and the Monte Carlo estimations obtained in this
study and in Singh and Kaviany’s work [18]. Further inspection on
Fig. 4 indicates that our calculating results agree better with the
experimental data [28] than Singh and Kaviany’s results [18]. This
may be because Singh and Kaviany used a lower packing density
(0.42) in their simulation. The packing density in our simulation
is 0.57 which is much closer to 0.60 measured by Chen and Chur-
chill [28].

As mentioned earlier, laser radiation being able to penetrate
into deep part of opaque packed particles is due to multiple
reflections from the particle surfaces through pore paths. The
radiative heat flux distribution on each particle surface needs to
be determined prior to the subsequent analysis of melting and
sintering heat transfer. Since the present Monte Carlo method is
a particle-level technique, the radiative heat flux on each particle
surface can be calculated with high accuracy. For example, the
coordination number is found to be 5 for the sphere 275 (i.e.,
the 275th sphere that enters the packing bed) in a packed bed
of equal-size spheres and having a total thickness of zmax/R = 8.
Fig. 5(a) shows the sphere and the five contacted particles. The
calculated surface heat fluxes as a function of the zenith angle
/00 are presented in Fig. 5(b) for three different azimuth angles
h00, where the heat fluxes are normalized with P = 1 and R = 1 in
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Eq. (20). The particle surface is treated as specular. As shown in
Fig. 5(b), the radiative heat flux varies with /00 for the same azi-
muth angle h00. In addition, the distributions along the zenith an-
gle (/00) are quite different for different h00. This indicates that for a
randomly packing bed the radiative heat flux distribution on each
particle surface is not axisymmetric. Since all the spheres are con-
sidered to be opaque, the radiative heat on the surface area near a
contacting point must be very small. Thus, the non-uniform dis-
tribution of the radiative heat flux is essentially due to the com-
plex contacting condition among particles in a randomly packed
bed.

Fig. 6 shows the averaged heat flux (calculated by Eq. (21)) as a
function of the bed depth. The simulation conditions used here are
identical to those in the previous case shown in Fig. 5. Since the
Monte Carlo method is a probability-based technique, the data
points are scattered and it would be better to curve fit the simu-
lated results for clarity of presentation. As is seen, the heat flux
in the packed bed decreases as the depth increases due to particle
absorption.
Fig. 7 presents the influence of particle emissivity on the trans-
mittance and reflectance as well as the radiative heat flux distribu-
tion over the thickness of the packed bed. The simulation condition
is the same as those in Figs. 5 and 6. It can be seen from Fig. 7(a)
that the larger the particle emissivity is, the higher the radiative
heat flux level can reach. It is also observed from Fig. 7(b) and (c)
that both the transmittance and reflectance go down with increase
of the powder emissivity.

An efficient way to overcome the balling phenomenon is to pack
different types of metal powders that have different melting points
and, very probably, have different emissivities. This case is exam-
ined in Fig. 8 where the packed bed is composed of powders of
two materials with the emissivities of 0.4 and 0.8. The numbers
of the two types of powders are assumed to be the same, and so
are their radii. The height of the packed bed is eight times larger
than the particle radius. The particle surface is optically specular.
The two powder components are well mixed since the powders
are randomly packed. As shown in Fig. 8(a), the averaged heat flux
(the solid curve) falls in between those in the packed beds with
powders of one single material (e = 0.4 or e = 0.8). Fig. 8(b) and
(c) show the surface radiative heat flux distributions on two parti-
cles at the same bed height (i.e., the same z coordinate). It is appar-
ent that the radiative flux level on the particle with low emissivity
is much smaller than that on the particle with high emissivity.
Therefore, to effectively suppress the balling phenomenon, a favor-
able situation is that those powders with a higher emissivity have a
lower melting point so that they can be rapidly molten and sin-
tered with the solid powders that have the opposite properties.
The Hagen–Rubens relation [26] shows that the spectral emissivity
of pure metals increases with temperature as does the electrical
resistivity. However, there is no logical relationship between the
emissivity and melting point since the latter is mainly determined
by the strength of metal bond. This provides some space for engi-
neers to optimize the SLS manufacturing procedure by choosing a
reasonable combination of metal components. Based on our calcu-
lating results shown in Fig. 8(b) and (c), it is recommended that
preferences be given to those metal pair combinations in which
the structural metal has a high melting point and low emissivity
whereas the binder metal has a low melting point and high
emissivity.

Fig. 9 shows the radiative heat flux results for the packed struc-
tures composed of spherical particles with two distinctive sizes.
The emissivities of the two groups of particles are identical (0.4),
and the thickness of the packed bed is set at zmax/R2 = 20 with R2

being the radius of the smaller spheres. In Fig. 9, R1/R2 represents
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Fig. 7. Influence of particle emissivity: (a) radiative heat flux as a function of bed depth, (b) transmittance, and (c) reflectance.
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the radius ratio of the larger particles to the smaller ones, and n1/n2

denotes their population ratio. The radius of the smaller sphere is
set as the unit of the dimension. It can be seen from Fig. 9(a) that
the heat flux level for the case n1/n2 = 4:6 is higher than that for the
case n1/n2 = 6:4. This indicates that a higher energy flux can be
achieved when a bimodal distribution having less larger particles.
Fig. 9(b) and (c) show the surface radiative heat flux distributions
on two particles at the same bed height for the case R1/R2 = 2:1 and
n1:n2 = 4:6. The same trends are observed for the case R1/R2 = 2:1
and n1:n2 = 6:4, and they are not shown here for brevity. It can
be seen that the surface radiative heat flux level on larger particles
is higher than that on smaller particles. This is because larger par-
ticles have more chance to intercept photons due to their large
sizes.

As stated earlier, another idea to suppress the balling phenom-
enon is to use bimodal powders having the same composition but
distinctive sizes. On the one hand, the smaller particles have lower
thermal inertia. On the other hand, the radiative heat flux on the
surface of smaller particles is less than that on larger particle sur-
face due to their weak ability in photon capturing. The melting of
smaller particles does not necessarily precede the melting of larger
particles, which depends on the combining effect of thermal inertia
and local surface radiative heat flux distribution.

In real SLS applications, the two particle components may have
different surface scattering modes (i.e., specular or diffusive). The
Monte Carlo ray tracing method proposed in this study can easily
handle this situation. Fig. 10 plots the calculating results for the
packed beds composed of spherical particles with two distinctive
sizes and different surface scattering schemes. As can be seen in
Fig. 10, curve 1 almost coincides with curve 2, but there is a notable
deviation between curve 3 and curve 1. This indicates that the sur-
face scattering mode of smaller particles has less influence on the
overall depth-dependence of radiative heat flux compared to that
of the larger particles.

So far, we have discussed the 1-D radiative transfer in laser irra-
diated packed beds. In practical SLS process, the laser spot size usu-
ally is finite and smaller than the lateral dimensions of a powder
bed. Fig. 11 shows the calculating results for the finite laser beam
case. In this simulation, monosized particle packing is considered.
The thickness of the packed bed is zmax = 4 (the particle radius is set
as the unit dimension), and the particle emissivity is e = 0.4. The
powder surface is optically specular. Two sub-cases, stationary
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beam and moving beam, are examined. Fig. 11(a) shows the effect
of laser spot size on transmittance when the laser incident point is
fixed at x = 10, y = 10. As shown in Fig. 11(a), transmittance signal
drastically increases in the region 0 < rl < 1, then reaches a peak va-
lue at around rl = 1, and eventually approaches a saturated value.
Fig. 11(b) and (c) show the transmittance results for moving laser
beam case, which corresponds to the single-line laser scanning SLS
procedure. As can be seen, when the laser beam radius is 0.6
(Fig. 11(b)), there is a severe fluctuation in the transmittance signal
during the laser beam scanning process. However, when the laser
beam radius is increased to 2.0, the transmittance signal is quite
stable during the beam moving process. The fluctuation in
Fig. 11(b) is essentially caused by the random nature of the packing
structure, which is an open pore system. Varying local porosities in
such a system lead to different penetration ability of laser beam.
However, the effect of the random nature of the packing system
on the penetration depth will be offset by increasing the laser
beam size.
5. Conclusions

In this study, a sequential addition packing algorithm is em-
ployed to generate 3-D random packing of spherical particles with
the same or different sizes. Then, a Monte Carlo based ray tracing
algorithm is formulated to simulate the radiation heat transfer in
the bimodal random packing structures. After the credibility of
the Monte Carlo computer code is verified with previously pub-
lished experimental and numerical results, the radiative transfer
characteristics of bimodal packing structures are investigated.
The influences of particle surface emissivity and population ratio
of larger particles to smaller particles on the radiative transfer pro-
cess are examined. Non-uniform radiative heat flux distribution on
an individual sphere is demonstrated and analyzed. It is found that
a bimodal packing structure, in which larger particles are less than
smaller particles, can achieve a higher radiative heat flux level in
the packed bed. To effectively suppress the balling phenomenon,
care should be used in choosing the material combination in
two-component selective laser sintering. Our calculating results
show that preferences should be given to those metal pair combi-
nations in which the structural metal has a high melting point and
low emissivity whereas the binder metal has a low melting point
and high emissivity. The surface scattering mode of larger particles
can significantly affect the radiative heat flux distribution across
the bed depth. The effects of stationary and moving laser beams
are also examined. The theoretical model and numerical algorithm
formulated in this study are the first step aiming at establishing a
powerful particle-level heat transfer model for the SLS manufac-
turing process.
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